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Independence algebras, also known as v ∗-algebras

Let 〈A,A〉 be an algebra, where A is a non-empty set, and A is the
collection of all term operations of A.

A constant in an algebra A is the image of a basic nullary operation.
An algebraic constant is the image of a nullary term operation.
Note 〈∅〉 = ∅ if and only if A has no algebraic constants; if and only if A
has no constants.
We say that 〈A,A〉 satisfies the exchange property (EP), if for every
subset X of A and all elements x , y ∈ A if

y ∈ 〈X ∪ {x}〉 and y 6∈ 〈X 〉

then x ∈ 〈X ∪ {y}〉.
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Independence algebras, also known as v ∗-algebras

A subset X of A is called independent if for each x ∈ X we have
x 6∈ 〈X\{x}〉.

We say that a subset X of A is a basis of A if X generates A and is
independent.
Note
(i) Any algebra satisfying the exchange property (EP) has a basis.
(ii) A subset X is a basis if and only if X is a minimal generating set if and
only if X is the maximal independent set.
(iii) All of bases of A has the same cardinality, called the dimension of A.
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Independence algebras, also known as v ∗-algebras

We say that a mapping θ from A into itself is an endomorphism if for any
n-ary term operation t(x1, · · · , xn) we have

t(x1, · · · , xn)θ = t(x1θ, · · · , xnθ).

An algebra 〈A,A〉 satisfying the exchange property is called an
independence algebra if it satisfies the free basis property, by which we
mean that for any basis X of A and a map α : X −→ A, α can be
extended to an endomorphism of A.
For any independence algebra A, we have

〈∅〉 = C

where C is the collection of all elements u ∈ A such that there is a
constant term operation t(x1, · · · , xn) of A whose image is u.
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v -algebras

We say that an equality

f (x1, · · · , xn) = g(x1, · · · , xn)

depends on xj (1 ≤ j ≤ n), if there exists a system a1, · · · , an, a′j of
elements belonging to A for which

f (a1, · · · , aj−1, aj , aj+1, · · · , an) = g(a1, · · · , aj−1, aj , aj+1, · · · , an)

and

f (a1, · · · , aj−1, a′j , aj+1, · · · , an) 6= g(a1, · · · , aj−1, a′j , aj+1, · · · , an).
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v -algebras

An algebra 〈A,A〉 is called a v-algebra if for every pair of integers
j , n (1 ≤ j ≤ n) and for every pair of n-ary term operations for which the
equality

f (x1, · · · , xn) = g(x1, · · · , xn)

depends on xj (1 ≤ j ≤ n), there exists a (n − 1)-ary term operation h
such that the above equality is equivalent to the equality

xj = h(x1, · · · , xj−1, xj+1, · · · , xn).

Note v -algebras are included in v∗-algebras.
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Representation theorem

Let G be a group of transformations of a non-empty set A. We say that a
subset B ⊆ A is normal with respect to the group G if B contains fixed
points of all transformations that are not the identity belonging to G and
g(B) ⊆ B for every g ∈ G.

Note If transformations belonging to G have no fixed point, then the
empty set is normal with respect to G.
Notations
A(0) : the class of all values of constant term operations of A.
A(n) : the class of all n-ary term operations of A, where n ≥ 1.
A(n,k) : the subclass of A(n) containing all n-ary term operations depending
on at most k variables. i.e. f ∈ A(n,k) if there is some g ∈ A(k) such that

f (x1, · · · , xn) = g(xi1 , · · · , xxik )

for a system of indices i1, · · · , ik and for every x1, · · · , xn ∈ A.
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Representation theorem

f̂ : the unary term operation defined by

f̂ (x) = f (x , · · · , x),

where f ∈ A.

Ã(n) : the subclass of A(n) containing all n-ary term operations f for which

f̂ (x) = x .

Ã(n,k) : the intersection Ã(n) ∩ A(n,k).
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Ã(n,k) : the intersection Ã(n) ∩ A(n,k).
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Representation theorem

Let 〈A,A〉 be a v -algebra. Then one of the following holds:
(i) If A(0) 6= ∅ and A(3) 6= A(3,1), then there is a field K such that A is a
linear space over K and, further, there exists a linear subspace A0 of A
such that A is the class of all term operations f defined as

f (x1, · · · , xn) =
n∑

k=1

λkxk + a,

where λ1, · · · , λk ∈ K and a ∈ A0.

(ii) If A0 = ∅ and A(3) 6= A(3,1), then there is a field K such that A is a
linear space over K and further, there exits a linear subspace A0 of A such
that A is the class of all term operations f defined as

f (x1, · · · , xn) =
n∑

k=1

λkxk + a,

where λ1, · · · , λk ∈ K,
∑n

k=1 λk = 1 and a ∈ A0.
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Representation theorem

(iii) If A(3) = A(3,1), then there is a group G of transformations of the set
A such that every transformation that is not the identity has at most one
fixed point in A. Moreover, there is a subset A0 ⊆ A normal with respect
to the group G such that A is the class of all term operations f defined as

f (x1, · · · , xn) = g(xj) (1 ≤ j ≤ n),

or
f (x1, · · · , xn) = a,

where g ∈ G and a ∈ A0.
Note In case (iii), we have A(n) = A(n,1).
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Representation theorem

Let 〈A,A〉 be a v∗-algebra with dimension at least three. Then one of the
following cases holds.
(i) 〈A,A〉 is a v -algebra.
(ii) There exist a permutation group G of the set A and a subset A0 of A
normal with respect to G such that A is the class of all term operations f
defined as

f (x1, · · · , xn) = g(xj) (1 ≤ j ≤ n),

or
f (x1, · · · , xn) = a,

where g ∈ G and a ∈ A0.
Note In the above case (ii), A(n) = A(n,1).
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Main ideas

Fact 1: If A(n) 6= A(n,1) for any n ≥ 3, then Ã(n) 6= Ã(n,1).

We say that a term operation s ∈ Ã(3) is quasi-symmetric if

s(x1, x2, x1) = s(x2, x1, x1) = x2

for each x1, x2 ∈ A.
Fact 2: If s is a quasi-symmetric term operation, then for all
x1, x2, x3, x4 ∈ A the following equalities are true:
(i) s(x1, x2, x3) = s(x2, x1, x3).
(ii) s(s(x1, x2, x3), x4, x3) = s(x1, s(x2, x4, x3), x3).
(iii) f (s(x1, x2, x3), x3) = s(f (x1, x3), f (x2, x3), x3) for any f ∈ Ã(2).
(iv) f (x1, x2, x3) = s(f (x1, x1, x3), f (x1, x2, x1), x1) for any f ∈ Ã(3).
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We say that a term operation s ∈ Ã(3) is quasi-symmetric if
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s(x1, x2, x1) = s(x2, x1, x1) = x2

for each x1, x2 ∈ A.
Fact 2: If s is a quasi-symmetric term operation, then for all
x1, x2, x3, x4 ∈ A the following equalities are true:
(i) s(x1, x2, x3) = s(x2, x1, x3).
(ii) s(s(x1, x2, x3), x4, x3) = s(x1, s(x2, x4, x3), x3).
(iii) f (s(x1, x2, x3), x3) = s(f (x1, x3), f (x2, x3), x3) for any f ∈ Ã(2).
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Main ideas

Fact 3: If A(3) 6= A(3,1), then there is a quasi-symmetric term operation.

Let K be the class Ã(2). Elements of K will be denoted by small Greek
letters: λ, µ, ν, · · · . Then we have
Fact 4: If A(3) 6= A(3,1), then K is a field with respect to the operations:

(λ+ µ)(x1, x2) = s(λ(x1, x2), µ(x1, x2), x2),

(λ · µ)(x1, x2) = λ(µ(x1, x2), x2),

where s is a quasi-symmetric term operation.
Note: The zero element and the unit element of K are defined by

0(x1, x2) = x2, 1(x1, x2) = x1.
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Let K be the class Ã(2). Elements of K will be denoted by small Greek
letters: λ, µ, ν, · · · . Then we have

Fact 4: If A(3) 6= A(3,1), then K is a field with respect to the operations:

(λ+ µ)(x1, x2) = s(λ(x1, x2), µ(x1, x2), x2),

(λ · µ)(x1, x2) = λ(µ(x1, x2), x2),

where s is a quasi-symmetric term operation.
Note: The zero element and the unit element of K are defined by

0(x1, x2) = x2, 1(x1, x2) = x1.

(Urbanik) v∗-algebras January 8, 2014 13 / 25



Main ideas

Fact 3: If A(3) 6= A(3,1), then there is a quasi-symmetric term operation.
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Main ideas

Fact 5: If A(3) 6= A(3,1), then A is a linear space over K with respect to
the operations:

x + y = s(x , y , θ) (x , y ∈ A)

λ · x = λ(x , θ) (λ ∈ K, x ∈ A),

where θ is an element of A(0) if A(0) 6= ∅ and is an element of A if
A(0) = ∅.
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Main ideas

Fact 6: If A(3) 6= A(3,1), then all term operation f defined as

f (x1, · · · , xn) =
n∑

k=1

λkxk ,

where λ1, · · · , λn ∈ K and
∑n

k=1 λk = 1, belong to Ã(n) (n = 1, 2, · · · ).

Fact 7: If A(3) 6= A(3,1), then all term operation f belonging to
Ã(n) (n = 1, 2, · · · ) are of the form

f (x1, · · · , xn) =
n∑

k=1

λkxk ,

where λ1, · · · , λn ∈ K and
∑n

k=1 λk = 1.
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Main ideas

Fact 8: If A(3) 6= A(3,1), then the set

A0 = {f (θ) : f ∈ A(1)}

is a linear subspace of A. Moreover, for every f ∈ A(1) there is an element
λ ∈ K such that

f (x) = λx + f (θ)

for any x ∈ A.

Fact 9: If A(3) = A(3,1), then A(n) = A(n,1) for every n ≥ 1.
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Main ideas

Proof of the Representation Theorem of v-algebras:

(i) If A(0) 6= ∅ and A(3,1) 6= A(3), then by Fact 4 and Fact 5, there is field
K such that A is a linear space over K. Taking into account of the
definition of addition and scalar-multiplication in A and the definition of θ,
we infer that all term operations defined as

f (x1, · · · , xn) =
n∑

k=1

λkxk + a,

where λ1, · · · , λn ∈ K and a ∈ A0, belong to A.

(Urbanik) v∗-algebras January 8, 2014 17 / 25



Main ideas

Proof of the Representation Theorem of v-algebras:

(i) If A(0) 6= ∅ and A(3,1) 6= A(3), then by Fact 4 and Fact 5, there is field
K such that A is a linear space over K. Taking into account of the
definition of addition and scalar-multiplication in A and the definition of θ,
we infer that all term operations defined as

f (x1, · · · , xn) =
n∑

k=1

λkxk + a,

where λ1, · · · , λn ∈ K and a ∈ A0, belong to A.

(Urbanik) v∗-algebras January 8, 2014 17 / 25



Main ideas

Now, let f ∈ A. By Fact 8, we have the equality

f̂ (x) = λx + a

where λ ∈ K and a = f (θ) ∈ A0. Put

g(x1, · · · , xn) = f (x1, · · · , xn)− λxn − a + xn.

Obviously, ĝ(x) = x , so that g ∈ Ã(n). Using Fact 7, we have the equality

g(x1, · · · , xn) =
n∑

k=1

µkxk ,

where µ1, · · · , µk ∈ K, and hence we get the representation

f (x1, · · · , xn) =
n∑

k=1

λkxk + a.
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Main ideas

(ii) If A(0) = ∅ and A(3,1) 6= A(3), then by Fact 4 and Fact 5, there is a
field K such that A is a linear space over K.

First, it is proved that for all functions f belonging to A are of the form

f (x1, · · · , xn) = g(f0(x1, · · · , xn))

where g ∈ A(1) and f0 ∈ Ã(n).
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Main ideas

As g ∈ A(1). We have, by Fact 8,

g(x) = λx + g(θ).

We can show that λ = 1, so that

g(x) = x + g(θ).

Hence
f (x1, · · · , xn) = f0(x1, · · · , xn) + a

where a ∈ A0. Since f0 ∈ Ã(n), we have, by Fact 7, that

f (x1, · · · , xn) =
n∑

k=1

λkxk + a

where λ1, · · · , λn ∈ K and
∑n

k=1 λk = 1.
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Main ideas

(iii) If A(3) = A(3,1), then by Fact 9 A is the class of all term operations
f :

f (x1, · · · , xn) = h(xj),

where h ∈ A(1), 1 ≤ j ≤ n.

First let us assume that A(1) = A(1,0). This implies that A is the one-point
set: A = {a0} and, consequently,

f (x1, · · · , xn) = a0

for every f ∈ A.
Let G be the group containing the identity transformation only and
A0 = ∅. Obviously, A0 is normal with respect to G.
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Main ideas

If A(1) 6= A(1,0). Put
G = A(1)\A(1,0).

Then G is a group with respect to the operation

(g1 · g2)(x) = g1(g2(x)).

The set
A0 = A(0)

is normal with respect to G. Finally, all term operations of A is of the form

f (x1, · · · , xn) = g(xj) (1 ≤ j ≤ n)

or
f (x1, · · · , xn) = a,

where g ∈ G.
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Independence algebras with no constants

Let A be an independence algebra with dimension at least 3. If A has no
constants, then one of the following holds:

(i) A(n) = A(n,1), for all n ≥ 1.
(ii) A is an affine algebra, namely, there is a field K such that A is a linear
space over K and further, there exits a linear subspace A0 of A such that
A is the class of all term operations f defined as

f (x1, · · · , xn) =
n∑

k=1

λkxk + a,

where λ1, · · · , λk ∈ K,
∑n

k=1 λk = 1 and a ∈ A0.
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Independence algebras with no constants

The set H of all unary term operations of A forms a group under the
multiplication given as the composition of functions.

Let t(x1, · · · , xn) be a truly n-ary term operation of A with n ≥ 3. Then A
must be an affine algebra, so that

t(x1, · · · , xn) = k1x1 + · · ·+ knxn + a,

where k1 + · · ·+ kn = 1 and a ∈ A0.
Let s2, · · · , sn−1 be unary term operations of A. Then

s2(x) = x + a2, · · · , sn−1(x) = x + an−1

where a2, · · · , an−1 ∈ A0.
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Independence algebras with no constants

Define a mapping

ψ : H −→ H, u(x) 7−→ t(x , s2(x), · · · , sn−1(x), u(x)).

Is ψ onto?
For any unary term operation v(x) = x + b ∈ H with b ∈ A0, by putting
sn(x) = x + an, where

an = k−1n (b − k2a2 − · · · − kn−1an−1 − a) ∈ A0

we have
t(x , s2(x), · · · , sn−1(x), sn(x)) = v(x),

and hence ψ is onto.
Question: Can we show the map ψ is onto without using Urbanik’s
Representation Theorem??? :-(
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